Properties

Label 43200.be.5400.l1
Order $ 2^{3} $
Index $ 2^{3} \cdot 3^{3} \cdot 5^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^3$
Order: \(8\)\(\medspace = 2^{3} \)
Index: \(5400\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 5^{2} \)
Exponent: \(2\)
Generators: $\langle(2,5)(3,4), (2,3)(4,5), (1,11)(2,4)(3,5)(6,8)(7,9)(13,14)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.

Ambient group ($G$) information

Description: $A_4\times A_5^2$
Order: \(43200\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5^{2} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, an A-group, and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_4\times S_5\wr C_2$, of order \(691200\)\(\medspace = 2^{10} \cdot 3^{3} \cdot 5^{2} \)
$\operatorname{Aut}(H)$ $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
$W$$C_3$, of order \(3\)

Related subgroups

Centralizer:$C_2^6$
Normalizer:$A_4\times C_2^4$
Normal closure:$C_2^2\times A_5^2$
Core:$C_2^2$
Minimal over-subgroups:$C_2\times D_{10}$$C_2\times D_{10}$$C_2\times A_4$$C_2\times D_6$$C_2\times D_6$$C_2^4$$C_2^4$$C_2^4$
Maximal under-subgroups:$C_2^2$$C_2^2$$C_2^2$

Other information

Number of subgroups in this autjugacy class$225$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$32$
Projective image$A_4\times A_5^2$