Subgroup ($H$) information
| Description: | $C_6$ |
| Order: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Index: | \(72\)\(\medspace = 2^{3} \cdot 3^{2} \) |
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Generators: |
$c^{3}, b^{2}$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is normal, a direct factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), and central.
Ambient group ($G$) information
| Description: | $C_6^3:C_2$ |
| Order: | \(432\)\(\medspace = 2^{4} \cdot 3^{3} \) |
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.
Quotient group ($Q$) structure
| Description: | $C_6:D_6$ |
| Order: | \(72\)\(\medspace = 2^{3} \cdot 3^{2} \) |
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Automorphism Group: | $S_4\times C_3^2:\GL(2,3)$, of order \(10368\)\(\medspace = 2^{7} \cdot 3^{4} \) |
| Outer Automorphisms: | $S_4^2$, of order \(576\)\(\medspace = 2^{6} \cdot 3^{2} \) |
| Nilpotency class: | $-1$ |
| Derived length: | $2$ |
The quotient is nonabelian, supersolvable (hence solvable and monomial), metabelian, an A-group, and rational.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2\times C_2^3.\PSL(2,7)\times \AGL(2,3)$ |
| $\operatorname{Aut}(H)$ | $C_2$, of order \(2\) |
| $\operatorname{res}(S)$ | $C_2$, of order \(2\) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(82944\)\(\medspace = 2^{10} \cdot 3^{4} \) |
| $W$ | $C_1$, of order $1$ |
Related subgroups
| Centralizer: | $C_6^3:C_2$ | ||
| Normalizer: | $C_6^3:C_2$ | ||
| Complements: | $C_6:D_6$ | ||
| Minimal over-subgroups: | $C_3\times C_6$ | $C_2\times C_6$ | $C_2\times C_6$ |
| Maximal under-subgroups: | $C_3$ | $C_2$ |
Other information
| Number of subgroups in this autjugacy class | $7$ |
| Number of conjugacy classes in this autjugacy class | $7$ |
| Möbius function | $-216$ |
| Projective image | $C_6:D_6$ |