Properties

Label 432.773.72.a1
Order $ 2 \cdot 3 $
Index $ 2^{3} \cdot 3^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6$
Order: \(6\)\(\medspace = 2 \cdot 3 \)
Index: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $c^{3}, b^{2}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, a direct factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), and central.

Ambient group ($G$) information

Description: $C_6^3:C_2$
Order: \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $C_6:D_6$
Order: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $S_4\times C_3^2:\GL(2,3)$, of order \(10368\)\(\medspace = 2^{7} \cdot 3^{4} \)
Outer Automorphisms: $S_4^2$, of order \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, supersolvable (hence solvable and monomial), metabelian, an A-group, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_2^3.\PSL(2,7)\times \AGL(2,3)$
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$\operatorname{res}(S)$$C_2$, of order \(2\)
$\card{\operatorname{ker}(\operatorname{res})}$\(82944\)\(\medspace = 2^{10} \cdot 3^{4} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_6^3:C_2$
Normalizer:$C_6^3:C_2$
Complements:$C_6:D_6$
Minimal over-subgroups:$C_3\times C_6$$C_2\times C_6$$C_2\times C_6$
Maximal under-subgroups:$C_3$$C_2$

Other information

Number of subgroups in this autjugacy class$7$
Number of conjugacy classes in this autjugacy class$7$
Möbius function$-216$
Projective image$C_6:D_6$