Subgroup ($H$) information
| Description: | $C_3\times C_6^2$ |
| Order: | \(108\)\(\medspace = 2^{2} \cdot 3^{3} \) |
| Index: | \(4\)\(\medspace = 2^{2} \) |
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Generators: |
$a, d^{2}, c^{3}, b^{2}, c^{2}$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is normal, a semidirect factor, and abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group).
Ambient group ($G$) information
| Description: | $C_6^3:C_2$ |
| Order: | \(432\)\(\medspace = 2^{4} \cdot 3^{3} \) |
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.
Quotient group ($Q$) structure
| Description: | $C_2^2$ |
| Order: | \(4\)\(\medspace = 2^{2} \) |
| Exponent: | \(2\) |
| Automorphism Group: | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
| Outer Automorphisms: | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2\times C_2^3.\PSL(2,7)\times \AGL(2,3)$ |
| $\operatorname{Aut}(H)$ | $S_3\times \GL(3,3)$, of order \(67392\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 13 \) |
| $\operatorname{res}(S)$ | $D_6\times \GL(2,3)$, of order \(576\)\(\medspace = 2^{6} \cdot 3^{2} \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(288\)\(\medspace = 2^{5} \cdot 3^{2} \) |
| $W$ | $C_2$, of order \(2\) |
Related subgroups
| Centralizer: | $C_6^3$ | |||
| Normalizer: | $C_6^3:C_2$ | |||
| Complements: | $C_2^2$ | |||
| Minimal over-subgroups: | $C_6^2:C_6$ | $C_6^3$ | ||
| Maximal under-subgroups: | $C_3^2\times C_6$ | $C_6^2$ | $C_6^2$ | $C_6^2$ |
Other information
| Number of subgroups in this autjugacy class | $7$ |
| Number of conjugacy classes in this autjugacy class | $7$ |
| Möbius function | $2$ |
| Projective image | $C_6:S_3$ |