Properties

Label 432.714.8.a1
Order $ 2 \cdot 3^{3} $
Index $ 2^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^2\times C_6$
Order: \(54\)\(\medspace = 2 \cdot 3^{3} \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $c^{6}, a^{2}, b^{2}, c^{4}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the socle (hence characteristic and normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), and elementary for $p = 3$ (hence hyperelementary).

Ambient group ($G$) information

Description: $C_6^2:D_6$
Order: \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_2^3$
Order: \(8\)\(\medspace = 2^{3} \)
Exponent: \(2\)
Automorphism Group: $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Outer Automorphisms: $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$\PSU(3,2).D_6.C_2^4$
$\operatorname{Aut}(H)$ $\GL(3,3)$, of order \(11232\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 13 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2\times \GL(2,3)$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$D_4\times C_3^3$
Normalizer:$C_6^2:D_6$
Minimal over-subgroups:$C_3\times C_6^2$$C_3^2:D_6$$C_3^2:D_6$$C_3^2\times C_{12}$$C_3^2:C_{12}$
Maximal under-subgroups:$C_3^3$$C_3\times C_6$$C_3\times C_6$$C_3\times C_6$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$-8$
Projective image$C_6:D_6$