Properties

Label 432.714.3.a1
Order $ 2^{4} \cdot 3^{2} $
Index $ 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{12}:D_6$
Order: \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Index: \(3\)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $a^{3}, c^{4}, b^{2}, b^{3}, c^{3}, c^{6}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, a direct factor, nonabelian, supersolvable (hence solvable and monomial), metabelian, and rational.

Ambient group ($G$) information

Description: $C_6^2:D_6$
Order: \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_3$
Order: \(3\)
Exponent: \(3\)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$\PSU(3,2).D_6.C_2^4$
$\operatorname{Aut}(H)$ $C_2\times C_2^4.\SL(3,3)$, of order \(6912\)\(\medspace = 2^{8} \cdot 3^{3} \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2\times C_2^4.\SL(3,3)$, of order \(6912\)\(\medspace = 2^{8} \cdot 3^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$C_6:D_6$, of order \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_6$
Normalizer:$C_6^2:D_6$
Complements:$C_3$ $C_3$
Minimal over-subgroups:$C_6^2:D_6$
Maximal under-subgroups:$C_6:D_6$$C_6^2:C_2$$D_4\times C_3^2$$C_{12}:S_3$$C_3:D_{12}$$S_3\times D_4$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$-1$
Projective image$C_6^2:C_6$