Properties

Label 432.682.54.c1
Order $ 2^{3} $
Index $ 2 \cdot 3^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_4$
Order: \(8\)\(\medspace = 2^{3} \)
Index: \(54\)\(\medspace = 2 \cdot 3^{3} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $c^{9}, d^{3}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_6^2.D_6$
Order: \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\PSU(3,2).C_6^2.C_2^5$
$\operatorname{Aut}(H)$ $D_4$, of order \(8\)\(\medspace = 2^{3} \)
$\operatorname{res}(S)$$D_4$, of order \(8\)\(\medspace = 2^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(3456\)\(\medspace = 2^{7} \cdot 3^{3} \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_6\times C_{12}$
Normalizer:$C_6:D_{12}$
Normal closure:$C_6:C_4$
Core:$C_2^2$
Minimal over-subgroups:$C_6:C_4$$C_2\times C_{12}$$C_2\times D_4$
Maximal under-subgroups:$C_2^2$$C_4$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$27$
Projective image$C_3:S_3^2$