Subgroup ($H$) information
Description: | $C_4\times S_3$ |
Order: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Index: | \(18\)\(\medspace = 2 \cdot 3^{2} \) |
Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Generators: |
$ac^{3}d^{3}, b^{3}, d^{3}, d^{2}$
|
Derived length: | $2$ |
The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.
Ambient group ($G$) information
Description: | $C_6^2:D_6$ |
Order: | \(432\)\(\medspace = 2^{4} \cdot 3^{3} \) |
Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Derived length: | $3$ |
The ambient group is nonabelian, monomial (hence solvable), and rational.
Quotient set structure
Since this subgroup has trivial core, the ambient group $G$ acts faithfully and transitively on the set of cosets of $H$. The resulting permutation representation is isomorphic to 18T152.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_6^2:D_6$, of order \(432\)\(\medspace = 2^{4} \cdot 3^{3} \) |
$\operatorname{Aut}(H)$ | $C_2\times D_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) |
$\operatorname{res}(S)$ | $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(4\)\(\medspace = 2^{2} \) |
$W$ | $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Related subgroups
Centralizer: | $C_4$ | |||
Normalizer: | $S_3\times D_4$ | |||
Normal closure: | $C_6^2:D_6$ | |||
Core: | $C_1$ | |||
Minimal over-subgroups: | $C_6.D_6$ | $S_3\times D_4$ | ||
Maximal under-subgroups: | $D_6$ | $C_{12}$ | $C_3:C_4$ | $C_2\times C_4$ |
Other information
Number of subgroups in this conjugacy class | $9$ |
Möbius function | $0$ |
Projective image | $C_6^2:D_6$ |