Subgroup ($H$) information
Description: | $D_4\times C_3^2$ |
Order: | \(72\)\(\medspace = 2^{3} \cdot 3^{2} \) |
Index: | \(6\)\(\medspace = 2 \cdot 3 \) |
Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Generators: |
$a, c^{18}, c^{9}, b^{2}, c^{12}$
|
Nilpotency class: | $2$ |
Derived length: | $2$ |
The subgroup is characteristic (hence normal), nonabelian, nilpotent (hence solvable, supersolvable, and monomial), and metacyclic (hence metabelian).
Ambient group ($G$) information
Description: | $D_{36}:C_6$ |
Order: | \(432\)\(\medspace = 2^{4} \cdot 3^{3} \) |
Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Quotient group ($Q$) structure
Description: | $S_3$ |
Order: | \(6\)\(\medspace = 2 \cdot 3 \) |
Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
Automorphism Group: | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
Outer Automorphisms: | $C_1$, of order $1$ |
Nilpotency class: | $-1$ |
Derived length: | $2$ |
The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), hyperelementary for $p = 2$, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_2\times D_{36}:C_6$, of order \(864\)\(\medspace = 2^{5} \cdot 3^{3} \) |
$\operatorname{Aut}(H)$ | $D_4\times \GL(2,3)$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $S_3\times D_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(18\)\(\medspace = 2 \cdot 3^{2} \) |
$W$ | $C_2\times D_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Related subgroups
Centralizer: | $C_3\times C_6$ | ||||
Normalizer: | $D_{36}:C_6$ | ||||
Minimal over-subgroups: | $C_{36}:C_6$ | $C_{12}:D_6$ | |||
Maximal under-subgroups: | $C_6^2$ | $C_6^2$ | $C_3\times C_{12}$ | $C_3\times D_4$ | $C_3\times D_4$ |
Other information
Möbius function | $3$ |
Projective image | $D_{18}:C_6$ |