Subgroup ($H$) information
| Description: | $S_3\times C_{12}$ | 
| Order: | \(72\)\(\medspace = 2^{3} \cdot 3^{2} \) | 
| Index: | \(6\)\(\medspace = 2 \cdot 3 \) | 
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) | 
| Generators: | $a, b^{2}, c^{9}, c^{12}, c^{18}$ | 
| Derived length: | $2$ | 
The subgroup is characteristic (hence normal), nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.
Ambient group ($G$) information
| Description: | $C_{36}:D_6$ | 
| Order: | \(432\)\(\medspace = 2^{4} \cdot 3^{3} \) | 
| Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) | 
| Derived length: | $2$ | 
The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Quotient group ($Q$) structure
| Description: | $C_6$ | 
| Order: | \(6\)\(\medspace = 2 \cdot 3 \) | 
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) | 
| Automorphism Group: | $C_2$, of order \(2\) | 
| Outer Automorphisms: | $C_2$, of order \(2\) | 
| Derived length: | $1$ | 
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_6^2:C_2^4$, of order \(576\)\(\medspace = 2^{6} \cdot 3^{2} \) | 
| $\operatorname{Aut}(H)$ | $C_2^2\times D_6$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) | 
| $\operatorname{res}(\operatorname{Aut}(G))$ | $C_2^2\times D_6$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) | 
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(12\)\(\medspace = 2^{2} \cdot 3 \) | 
| $W$ | $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) | 
Related subgroups
Other information
| Möbius function | $1$ | 
| Projective image | $C_6\times D_6$ | 
