Properties

Label 432.258.16.a1.a1
Order $ 3^{3} $
Index $ 2^{4} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$\He_3$
Order: \(27\)\(\medspace = 3^{3} \)
Index: \(16\)\(\medspace = 2^{4} \)
Exponent: \(3\)
Generators: $b, c^{2}d^{10}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, a $3$-Sylow subgroup (hence nilpotent, solvable, supersolvable, a Hall subgroup, and monomial), a $p$-group (hence elementary and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_3^2:\GL(2,3)$
Order: \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and solvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_6^2:D_6$, of order \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
$\operatorname{Aut}(H)$ $C_3^2:\GL(2,3)$, of order \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)
$\operatorname{res}(S)$$C_3^2:D_6$, of order \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$C_3:S_3$, of order \(18\)\(\medspace = 2 \cdot 3^{2} \)

Related subgroups

Centralizer:$C_6$
Normalizer:$C_3^2:D_6$
Normal closure:$C_3^2:\SL(2,3)$
Core:$C_3^2$
Minimal over-subgroups:$C_2\times \He_3$$C_3^2:S_3$$C_3^2:S_3$
Maximal under-subgroups:$C_3^2$$C_3^2$$C_3^2$$C_3^2$

Other information

Number of subgroups in this conjugacy class$4$
Möbius function$0$
Projective image$C_3:\GL(2,3)$