Properties

Label 43008.cg.48._.J
Order $ 2^{7} \cdot 7 $
Index $ 2^{4} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^4:F_8$
Order: \(896\)\(\medspace = 2^{7} \cdot 7 \)
Index: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Exponent: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Generators: $\langle(2,5)(3,12)(6,24)(8,14)(9,20)(11,18)(15,19)(21,22), (2,8)(3,19)(5,14)(6,20) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, monomial (hence solvable), and metabelian.

Ambient group ($G$) information

Description: $C_2^6.(D_6\times F_8)$
Order: \(43008\)\(\medspace = 2^{11} \cdot 3 \cdot 7 \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^5.\SOPlus(4,2)$, of order \(903168\)\(\medspace = 2^{11} \cdot 3^{2} \cdot 7^{2} \)
$\operatorname{Aut}(H)$ $C_2^4:F_8:A_4$, of order \(10752\)\(\medspace = 2^{9} \cdot 3 \cdot 7 \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Normal closure: not computed
Core: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Number of subgroups in this conjugacy class$24$
Möbius function not computed
Projective image not computed