Properties

Label 4300.c.4.a1.a1
Order $ 5^{2} \cdot 43 $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5\times C_{215}$
Order: \(1075\)\(\medspace = 5^{2} \cdot 43 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(215\)\(\medspace = 5 \cdot 43 \)
Generators: $a^{2}, b^{172}, b^{10}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), a direct factor, central (hence abelian, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a Hall subgroup, elementary for $p = 5$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_{10}\times C_{430}$
Order: \(4300\)\(\medspace = 2^{2} \cdot 5^{2} \cdot 43 \)
Exponent: \(430\)\(\medspace = 2 \cdot 5 \cdot 43 \)
Nilpotency class:$1$
Derived length:$1$

The ambient group is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and metacyclic.

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{42}\times S_3\times \GL(2,5)$
$\operatorname{Aut}(H)$ $C_{42}\times \GL(2,5)$
$\card{\operatorname{res}(\operatorname{Aut}(G))}$\(20160\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(6\)\(\medspace = 2 \cdot 3 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{10}\times C_{430}$
Normalizer:$C_{10}\times C_{430}$
Complements:$C_2^2$
Minimal over-subgroups:$C_5\times C_{430}$$C_5\times C_{430}$$C_5\times C_{430}$
Maximal under-subgroups:$C_{215}$$C_{215}$$C_{215}$$C_{215}$$C_{215}$$C_{215}$$C_5^2$

Other information

Möbius function$2$
Projective image$C_2^2$