Properties

Label 4300.c.215.a1.c1
Order $ 2^{2} \cdot 5 $
Index $ 5 \cdot 43 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_{10}$
Order: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Index: \(215\)\(\medspace = 5 \cdot 43 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Generators: $a^{5}, a^{2}, b^{215}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, a direct factor, central (hence abelian, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_{10}\times C_{430}$
Order: \(4300\)\(\medspace = 2^{2} \cdot 5^{2} \cdot 43 \)
Exponent: \(430\)\(\medspace = 2 \cdot 5 \cdot 43 \)
Nilpotency class:$1$
Derived length:$1$

The ambient group is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and metacyclic.

Quotient group ($Q$) structure

Description: $C_{215}$
Order: \(215\)\(\medspace = 5 \cdot 43 \)
Exponent: \(215\)\(\medspace = 5 \cdot 43 \)
Automorphism Group: $C_2\times C_{84}$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Outer Automorphisms: $C_2\times C_{84}$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 5,43$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{42}\times S_3\times \GL(2,5)$
$\operatorname{Aut}(H)$ $C_4\times S_3$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$\operatorname{res}(S)$$C_4\times S_3$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(840\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{10}\times C_{430}$
Normalizer:$C_{10}\times C_{430}$
Complements:$C_{215}$ $C_{215}$ $C_{215}$ $C_{215}$ $C_{215}$
Minimal over-subgroups:$C_2\times C_{430}$$C_{10}^2$
Maximal under-subgroups:$C_{10}$$C_{10}$$C_{10}$$C_2^2$
Autjugate subgroups:4300.c.215.a1.a14300.c.215.a1.b14300.c.215.a1.d14300.c.215.a1.e14300.c.215.a1.f1

Other information

Möbius function$1$
Projective image$C_{215}$