Subgroup ($H$) information
Description: | $C_{10}$ |
Order: | \(10\)\(\medspace = 2 \cdot 5 \) |
Index: | \(43\) |
Exponent: | \(10\)\(\medspace = 2 \cdot 5 \) |
Generators: |
$a^{215}, a^{172}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is characteristic (hence normal), maximal, a direct factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,5$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), central, and a Hall subgroup.
Ambient group ($G$) information
Description: | $C_{430}$ |
Order: | \(430\)\(\medspace = 2 \cdot 5 \cdot 43 \) |
Exponent: | \(430\)\(\medspace = 2 \cdot 5 \cdot 43 \) |
Nilpotency class: | $1$ |
Derived length: | $1$ |
The ambient group is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,5,43$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Quotient group ($Q$) structure
Description: | $C_{43}$ |
Order: | \(43\) |
Exponent: | \(43\) |
Automorphism Group: | $C_{42}$, of order \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \) |
Outer Automorphisms: | $C_{42}$, of order \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \) |
Nilpotency class: | $1$ |
Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_2\times C_{84}$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) |
$\operatorname{Aut}(H)$ | $C_4$, of order \(4\)\(\medspace = 2^{2} \) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $C_4$, of order \(4\)\(\medspace = 2^{2} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \) |
$W$ | $C_1$, of order $1$ |
Related subgroups
Centralizer: | $C_{430}$ | |
Normalizer: | $C_{430}$ | |
Complements: | $C_{43}$ | |
Minimal over-subgroups: | $C_{430}$ | |
Maximal under-subgroups: | $C_5$ | $C_2$ |
Other information
Möbius function | $-1$ |
Projective image | $C_{43}$ |