Properties

Label 42998169600000000.bv.4._.BA
Order $ 2^{22} \cdot 3^{8} \cdot 5^{8} $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$A_5^8.C_2\wr C_2^2$
Order: \(10749542400000000\)\(\medspace = 2^{22} \cdot 3^{8} \cdot 5^{8} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Generators: $\langle(27,28,29), (16,20,17), (36,40,39), (1,3,4,5,2)(7,8,9,10)(13,15,14)(16,18,20,19,17) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, nonabelian, and nonsolvable. Whether it is a direct factor, a semidirect factor, or rational has not been computed.

Ambient group ($G$) information

Description: $A_5^8.D_4^2.C_2^2$
Order: \(42998169600000000\)\(\medspace = 2^{24} \cdot 3^{8} \cdot 5^{8} \)
Exponent: \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and nonsolvable. Whether it is rational has not been computed.

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(171992678400000000\)\(\medspace = 2^{26} \cdot 3^{8} \cdot 5^{8} \)
$\operatorname{Aut}(H)$ Group of order \(85996339200000000\)\(\medspace = 2^{25} \cdot 3^{8} \cdot 5^{8} \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Möbius function not computed
Projective image not computed