Properties

Label 4200.o.600.a1.a1
Order $ 7 $
Index $ 2^{3} \cdot 3 \cdot 5^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_7$
Order: \(7\)
Index: \(600\)\(\medspace = 2^{3} \cdot 3 \cdot 5^{2} \)
Exponent: \(7\)
Generators: $b^{5}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), a semidirect factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $7$-Sylow subgroup (hence a Hall subgroup), a $p$-group, and simple.

Ambient group ($G$) information

Description: $C_{35}:C_{120}$
Order: \(4200\)\(\medspace = 2^{3} \cdot 3 \cdot 5^{2} \cdot 7 \)
Exponent: \(840\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Quotient group ($Q$) structure

Description: $C_5:C_{120}$
Order: \(600\)\(\medspace = 2^{3} \cdot 3 \cdot 5^{2} \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Automorphism Group: $D_{10}.C_2^5$, of order \(640\)\(\medspace = 2^{7} \cdot 5 \)
Outer Automorphisms: $C_2^4\times C_4$, of order \(64\)\(\medspace = 2^{6} \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^3\times C_4\times F_5\times F_7$
$\operatorname{Aut}(H)$ $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4480\)\(\medspace = 2^{7} \cdot 5 \cdot 7 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_5\times C_{420}$
Normalizer:$C_{35}:C_{120}$
Complements:$C_5:C_{120}$
Minimal over-subgroups:$C_{35}$$C_{35}$$C_{35}$$C_{35}$$C_{21}$$C_{14}$
Maximal under-subgroups:$C_1$

Other information

Möbius function$0$
Projective image$C_{35}:C_{120}$