Subgroup ($H$) information
| Description: | $C_3:D_4$ | 
| Order: | \(24\)\(\medspace = 2^{3} \cdot 3 \) | 
| Index: | \(175\)\(\medspace = 5^{2} \cdot 7 \) | 
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) | 
| Generators: | 
		
    $\left(\begin{array}{rr}
0 & 1 \\
1 & 0
\end{array}\right), \left(\begin{array}{rr}
210 & 0 \\
0 & 210
\end{array}\right), \left(\begin{array}{rr}
1 & 0 \\
0 & 210
\end{array}\right), \left(\begin{array}{rr}
196 & 0 \\
0 & 14
\end{array}\right)$
    
    
    
         | 
| Derived length: | $2$ | 
The subgroup is nonabelian, a Hall subgroup, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Ambient group ($G$) information
| Description: | $D_{210}:C_{10}$ | 
| Order: | \(4200\)\(\medspace = 2^{3} \cdot 3 \cdot 5^{2} \cdot 7 \) | 
| Exponent: | \(420\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \) | 
| Derived length: | $2$ | 
The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2\times C_4\times C_{105}.C_6.C_2^4$ | 
| $\operatorname{Aut}(H)$ | $C_2\times D_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) | 
| $\operatorname{res}(S)$ | $C_2\times D_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) | 
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(96\)\(\medspace = 2^{5} \cdot 3 \) | 
| $W$ | $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) | 
Related subgroups
Other information
| Number of subgroups in this conjugacy class | $35$ | 
| Möbius function | $-1$ | 
| Projective image | $C_5\times D_{210}$ |