Properties

Label 4200.b.175.a1.a1
Order $ 2^{3} \cdot 3 $
Index $ 5^{2} \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3:D_4$
Order: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Index: \(175\)\(\medspace = 5^{2} \cdot 7 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\left(\begin{array}{rr} 0 & 1 \\ 1 & 0 \end{array}\right), \left(\begin{array}{rr} 210 & 0 \\ 0 & 210 \end{array}\right), \left(\begin{array}{rr} 1 & 0 \\ 0 & 210 \end{array}\right), \left(\begin{array}{rr} 196 & 0 \\ 0 & 14 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, a Hall subgroup, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $D_{210}:C_{10}$
Order: \(4200\)\(\medspace = 2^{3} \cdot 3 \cdot 5^{2} \cdot 7 \)
Exponent: \(420\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_4\times C_{105}.C_6.C_2^4$
$\operatorname{Aut}(H)$ $C_2\times D_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$\operatorname{res}(S)$$C_2\times D_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(96\)\(\medspace = 2^{5} \cdot 3 \)
$W$$D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)

Related subgroups

Centralizer:$C_{10}$
Normalizer:$C_{15}:D_4$
Normal closure:$C_{105}:D_4$
Core:$C_2\times C_6$
Minimal over-subgroups:$C_{21}:D_4$$C_{15}:D_4$$C_{15}:D_4$
Maximal under-subgroups:$C_2\times C_6$$D_6$$C_3:C_4$$D_4$

Other information

Number of subgroups in this conjugacy class$35$
Möbius function$-1$
Projective image$C_5\times D_{210}$