Subgroup ($H$) information
| Description: | $S_3\times D_7$ | 
| Order: | \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) | 
| Index: | \(5\) | 
| Exponent: | \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \) | 
| Generators: | $a, c^{70}, c^{15}, b$ | 
| Derived length: | $2$ | 
The subgroup is characteristic (hence normal), maximal, a direct factor, nonabelian, a Hall subgroup, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.
Ambient group ($G$) information
| Description: | $C_{15}:D_{14}$ | 
| Order: | \(420\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \) | 
| Exponent: | \(210\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 7 \) | 
| Derived length: | $2$ | 
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.
Quotient group ($Q$) structure
| Description: | $C_5$ | 
| Order: | \(5\) | 
| Exponent: | \(5\) | 
| Automorphism Group: | $C_4$, of order \(4\)\(\medspace = 2^{2} \) | 
| Outer Automorphisms: | $C_4$, of order \(4\)\(\medspace = 2^{2} \) | 
| Derived length: | $1$ | 
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_4\times S_3\times F_7$, of order \(1008\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 7 \) | 
| $\operatorname{Aut}(H)$ | $S_3\times F_7$, of order \(252\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 7 \) | 
| $\operatorname{res}(\operatorname{Aut}(G))$ | $S_3\times F_7$, of order \(252\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 7 \) | 
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(4\)\(\medspace = 2^{2} \) | 
| $W$ | $S_3\times D_7$, of order \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) | 
Related subgroups
| Centralizer: | $C_5$ | ||||
| Normalizer: | $C_{15}:D_{14}$ | ||||
| Complements: | $C_5$ | ||||
| Minimal over-subgroups: | $C_{15}:D_{14}$ | ||||
| Maximal under-subgroups: | $S_3\times C_7$ | $C_3\times D_7$ | $D_{21}$ | $D_{14}$ | $D_6$ | 
Other information
| Möbius function | $-1$ | 
| Projective image | $C_{15}:D_{14}$ | 
