Properties

Label 416.81.4.f1.b1
Order $ 2^{3} \cdot 13 $
Index $ 2^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4\times D_{13}$
Order: \(104\)\(\medspace = 2^{3} \cdot 13 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(52\)\(\medspace = 2^{2} \cdot 13 \)
Generators: $a^{2}bc^{4}, c^{26}, c^{4}, c^{13}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Ambient group ($G$) information

Description: $C_{26}.C_4^2$
Order: \(416\)\(\medspace = 2^{5} \cdot 13 \)
Exponent: \(52\)\(\medspace = 2^{2} \cdot 13 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2\wr C_2\times F_{13}$, of order \(4992\)\(\medspace = 2^{7} \cdot 3 \cdot 13 \)
$\operatorname{Aut}(H)$ $C_2^2\times F_{13}$, of order \(624\)\(\medspace = 2^{4} \cdot 3 \cdot 13 \)
$\operatorname{res}(S)$$C_2\times F_{13}$, of order \(312\)\(\medspace = 2^{3} \cdot 3 \cdot 13 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$D_{13}$, of order \(26\)\(\medspace = 2 \cdot 13 \)

Related subgroups

Centralizer:$C_2\times C_4$
Normalizer:$C_4\times D_{26}$
Normal closure:$C_4\times D_{26}$
Core:$D_{26}$
Minimal over-subgroups:$C_4\times D_{26}$
Maximal under-subgroups:$D_{26}$$C_{52}$$C_{13}:C_4$$C_2\times C_4$
Autjugate subgroups:416.81.4.f1.a1

Other information

Number of subgroups in this conjugacy class$2$
Möbius function$0$
Projective image$D_{26}:C_4$