Properties

Label 416.81.4.e1.b1
Order $ 2^{3} \cdot 13 $
Index $ 2^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{26}:C_4$
Order: \(104\)\(\medspace = 2^{3} \cdot 13 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(52\)\(\medspace = 2^{2} \cdot 13 \)
Generators: $ac, a^{2}bc^{6}, c^{4}, bc^{26}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Ambient group ($G$) information

Description: $C_{26}.C_4^2$
Order: \(416\)\(\medspace = 2^{5} \cdot 13 \)
Exponent: \(52\)\(\medspace = 2^{2} \cdot 13 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2\wr C_2\times F_{13}$, of order \(4992\)\(\medspace = 2^{7} \cdot 3 \cdot 13 \)
$\operatorname{Aut}(H)$ $C_2\times F_{13}$, of order \(312\)\(\medspace = 2^{3} \cdot 3 \cdot 13 \)
$\operatorname{res}(S)$$C_2\times F_{13}$, of order \(312\)\(\medspace = 2^{3} \cdot 3 \cdot 13 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$C_{13}:C_4$, of order \(52\)\(\medspace = 2^{2} \cdot 13 \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$D_{26}:C_4$
Normal closure:$D_{26}:C_4$
Core:$D_{26}$
Minimal over-subgroups:$D_{26}:C_4$
Maximal under-subgroups:$D_{26}$$C_{13}:C_4$$C_{13}:C_4$$C_2\times C_4$
Autjugate subgroups:416.81.4.e1.a1

Other information

Number of subgroups in this conjugacy class$2$
Möbius function$0$
Projective image$C_{52}:C_4$