Subgroup ($H$) information
Description: | $A_6.S_5$ |
Order: | \(43200\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5^{2} \) |
Index: | \(96\)\(\medspace = 2^{5} \cdot 3 \) |
Exponent: | \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \) |
Generators: |
$\langle(1,3)(2,9,7,4,6,8,5,10)(11,17,12,18)(13,20,19,16)(14,15), (11,20)(12,15) \!\cdots\! \rangle$
|
Derived length: | $1$ |
The subgroup is nonabelian and nonsolvable.
Ambient group ($G$) information
Description: | $S_6^2.D_4$ |
Order: | \(4147200\)\(\medspace = 2^{11} \cdot 3^{4} \cdot 5^{2} \) |
Exponent: | \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \) |
Derived length: | $2$ |
The ambient group is nonabelian, nonsolvable, and rational.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $S_6^2.D_4$, of order \(4147200\)\(\medspace = 2^{11} \cdot 3^{4} \cdot 5^{2} \) |
$\operatorname{Aut}(H)$ | $S_5\times S_6:C_2$, of order \(172800\)\(\medspace = 2^{8} \cdot 3^{3} \cdot 5^{2} \) |
$\card{W}$ | not computed |
Related subgroups
Centralizer: | not computed |
Normalizer: | not computed |
Normal closure: | not computed |
Core: | not computed |
Autjugate subgroups: | Subgroups are not computed up to automorphism. |
Other information
Number of subgroups in this conjugacy class | $24$ |
Möbius function | not computed |
Projective image | not computed |