Properties

Label 4147200.a.96._.C
Order $ 2^{6} \cdot 3^{3} \cdot 5^{2} $
Index $ 2^{5} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$A_6.S_5$
Order: \(43200\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5^{2} \)
Index: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Generators: $\langle(1,3)(2,9,7,4,6,8,5,10)(11,17,12,18)(13,20,19,16)(14,15), (11,20)(12,15) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $1$

The subgroup is nonabelian and nonsolvable.

Ambient group ($G$) information

Description: $S_6^2.D_4$
Order: \(4147200\)\(\medspace = 2^{11} \cdot 3^{4} \cdot 5^{2} \)
Exponent: \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, nonsolvable, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_6^2.D_4$, of order \(4147200\)\(\medspace = 2^{11} \cdot 3^{4} \cdot 5^{2} \)
$\operatorname{Aut}(H)$ $S_5\times S_6:C_2$, of order \(172800\)\(\medspace = 2^{8} \cdot 3^{3} \cdot 5^{2} \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Normal closure: not computed
Core: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Number of subgroups in this conjugacy class$24$
Möbius function not computed
Projective image not computed