Properties

Label 41472.eq.6.J
Order $ 2^{8} \cdot 3^{3} $
Index $ 2 \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$(C_2^3\times C_6^2):D_{12}$
Order: \(6912\)\(\medspace = 2^{8} \cdot 3^{3} \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(10,11)(13,14), (1,2)(3,7)(4,8)(5,6), (2,8)(5,7)(13,14), (2,4,8)(5,6,7) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and solvable. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $(S_3^2\times A_4^2):C_2^3$
Order: \(41472\)\(\medspace = 2^{9} \cdot 3^{4} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{794}:C_{198}$, of order \(663552\)\(\medspace = 2^{13} \cdot 3^{4} \)
$\operatorname{Aut}(H)$ $C_6^2.(C_2\times A_4).C_2^6.C_2$
$W$$D_6^2:(C_2\times S_4)$, of order \(6912\)\(\medspace = 2^{8} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$D_6^2:(C_2^2\times S_4)$
Normal closure:$(S_3^2\times A_4^2):C_2^3$
Core:$C_6^2:(C_2^2\times S_4)$
Minimal over-subgroups:$A_4^2:S_3^2:C_2^2$$D_6^2:(C_2^2\times S_4)$
Maximal under-subgroups:$C_6^2:(C_2^2\times S_4)$$C_6^2:(C_2^2\times S_4)$$(C_2^3\times C_6^2):C_{12}$$(C_2^2\times C_6^2):D_{12}$$C_2\times C_3:S_3.C_2\wr C_2^2$$C_2\times C_6^2:D_{12}$$C_2^5:D_{12}$

Other information

Number of subgroups in this autjugacy class$6$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image not computed