Properties

Label 41472.eq.24.A
Order $ 2^{6} \cdot 3^{3} $
Index $ 2^{3} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6^2:(C_2^2\times A_4)$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Index: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(3,6)(5,7)(9,11,10), (10,11)(13,14), (15,16), (9,10,11), (1,2)(3,7)(4,8) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, nonabelian, monomial (hence solvable), metabelian, and an A-group.

Ambient group ($G$) information

Description: $(S_3^2\times A_4^2):C_2^3$
Order: \(41472\)\(\medspace = 2^{9} \cdot 3^{4} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2\times D_6$
Order: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $S_3\times S_4$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Outer Automorphisms: $S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length: $2$

The quotient is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, an A-group, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{794}:C_{198}$, of order \(663552\)\(\medspace = 2^{13} \cdot 3^{4} \)
$\operatorname{Aut}(H)$ $\AGL(2,3)\times C_2^4.(C_6\times A_5).C_2$
$\card{W}$\(20736\)\(\medspace = 2^{8} \cdot 3^{4} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$(S_3^2\times A_4^2):C_2^3$
Minimal over-subgroups:$C_2\times C_3^2.A_4^2.C_2$$C_2\times C_6^2.(C_2^2\times A_4)$$C_6^2:(C_2^2\times S_4)$$C_2^5:C_3^3:C_4$$C_2\times (C_2^3\times C_6).S_3^2$$C_2\times D_6^2:A_4$$C_6^2:(C_2^2\times S_4)$$(C_2^3\times C_6^2):C_{12}$
Maximal under-subgroups:$C_2^5:C_3^3$$C_6^2:(C_2\times A_4)$$C_6^2:(C_2\times A_4)$$C_6^2:C_2^4$

Other information

Number of subgroups in this autjugacy class$2$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image not computed