Properties

Label 41472.dq.20736.C
Order $ 2 $
Index $ 2^{8} \cdot 3^{4} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2$
Order: \(2\)
Index: \(20736\)\(\medspace = 2^{8} \cdot 3^{4} \)
Exponent: \(2\)
Generators: $\langle(2,8)(4,5)(16,17)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Ambient group ($G$) information

Description: $C_6^2:S_4\wr C_2$
Order: \(41472\)\(\medspace = 2^{9} \cdot 3^{4} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{1191}:C_{44}$, of order \(995328\)\(\medspace = 2^{12} \cdot 3^{5} \)
$\operatorname{Aut}(H)$ $C_1$, of order $1$
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_2\times (C_3\times C_6\times A_4).C_2^4$
Normalizer:$C_2\times (C_3\times C_6\times A_4).C_2^4$
Normal closure:$C_2^6$
Core:$C_1$
Minimal over-subgroups:$C_2^2$$C_2^2$$C_2^2$$C_2^2$
Maximal under-subgroups:$C_1$

Other information

Number of subgroups in this autjugacy class$12$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image$C_6^2:S_4\wr C_2$