Properties

Label 41472.dq.144.A
Order $ 2^{5} \cdot 3^{2} $
Index $ 2^{4} \cdot 3^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^3\times C_6^2$
Order: \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
Index: \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(9,11,13)(10,12,14), (1,6)(2,8)(3,7)(4,5), (2,4)(5,8)(9,13,11), (2,8)(4,5), (15,18)(16,17), (2,5)(4,8), (1,3)(2,4)(5,8)(6,7)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the socle (hence characteristic and normal) and abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group).

Ambient group ($G$) information

Description: $C_6^2:S_4\wr C_2$
Order: \(41472\)\(\medspace = 2^{9} \cdot 3^{4} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $S_3^2:C_2^2$
Order: \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $C_6^2:\SD_{16}$, of order \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
Outer Automorphisms: $D_4$, of order \(8\)\(\medspace = 2^{3} \)
Nilpotency class: $-1$
Derived length: $3$

The quotient is nonabelian, monomial (hence solvable), and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{1191}:C_{44}$, of order \(995328\)\(\medspace = 2^{12} \cdot 3^{5} \)
$\operatorname{Aut}(H)$ $\GL(5,2)\times \GL(2,3)$
$W$$\SOPlus(4,2)$, of order \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_2^4\times C_6^2$
Normalizer:$C_6^2:S_4\wr C_2$
Minimal over-subgroups:$C_2^2:C_6^3$$C_2^5:C_3^3$$C_2^4\times C_6^2$$C_6^2:C_2^4$$C_6^2.C_2^4$$C_6^2.C_2^4$$C_6^2.C_2^4$$(C_2^3\times C_6):C_{12}$
Maximal under-subgroups:$C_2^2\times C_6^2$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_3^2:S_4^2:C_2^2$