Subgroup ($H$) information
Description: | $C_2^3\times C_6^2$ |
Order: | \(288\)\(\medspace = 2^{5} \cdot 3^{2} \) |
Index: | \(144\)\(\medspace = 2^{4} \cdot 3^{2} \) |
Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
Generators: |
$\langle(9,11,13)(10,12,14), (1,6)(2,8)(3,7)(4,5), (2,4)(5,8)(9,13,11), (2,8)(4,5), (15,18)(16,17), (2,5)(4,8), (1,3)(2,4)(5,8)(6,7)\rangle$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is the socle (hence characteristic and normal) and abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group).
Ambient group ($G$) information
Description: | $C_6^2:S_4\wr C_2$ |
Order: | \(41472\)\(\medspace = 2^{9} \cdot 3^{4} \) |
Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Derived length: | $4$ |
The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.
Quotient group ($Q$) structure
Description: | $S_3^2:C_2^2$ |
Order: | \(144\)\(\medspace = 2^{4} \cdot 3^{2} \) |
Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Automorphism Group: | $C_6^2:\SD_{16}$, of order \(576\)\(\medspace = 2^{6} \cdot 3^{2} \) |
Outer Automorphisms: | $D_4$, of order \(8\)\(\medspace = 2^{3} \) |
Nilpotency class: | $-1$ |
Derived length: | $3$ |
The quotient is nonabelian, monomial (hence solvable), and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_{1191}:C_{44}$, of order \(995328\)\(\medspace = 2^{12} \cdot 3^{5} \) |
$\operatorname{Aut}(H)$ | $\GL(5,2)\times \GL(2,3)$ |
$W$ | $\SOPlus(4,2)$, of order \(72\)\(\medspace = 2^{3} \cdot 3^{2} \) |
Related subgroups
Other information
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | not computed |
Projective image | $C_3^2:S_4^2:C_2^2$ |