Properties

Label 41472.dq.10368.L
Order $ 2^{2} $
Index $ 2^{7} \cdot 3^{4} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Index: \(10368\)\(\medspace = 2^{7} \cdot 3^{4} \)
Exponent: \(2\)
Generators: $\langle(1,3)(2,4)(6,7)(9,14)(10,13)(11,12)(16,17), (5,8)(6,7)(10,12)(11,13)(16,17)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Ambient group ($G$) information

Description: $C_6^2:S_4\wr C_2$
Order: \(41472\)\(\medspace = 2^{9} \cdot 3^{4} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{1191}:C_{44}$, of order \(995328\)\(\medspace = 2^{12} \cdot 3^{5} \)
$\operatorname{Aut}(H)$ $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer: not computed
Normalizer: not computed
Normal closure:$C_2\times A_4^2.C_3^2.C_2^3$
Core:$C_1$
Maximal under-subgroups:$C_2$$C_2$

Other information

Number of subgroups in this autjugacy class$2592$
Number of conjugacy classes in this autjugacy class$4$
Möbius function not computed
Projective image$C_6^2:S_4\wr C_2$