Subgroup ($H$) information
Description: | $C_2^2$ |
Order: | \(4\)\(\medspace = 2^{2} \) |
Index: | \(10368\)\(\medspace = 2^{7} \cdot 3^{4} \) |
Exponent: | \(2\) |
Generators: |
$\langle(16,17), (15,18)(16,17)\rangle$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is characteristic (hence normal), a semidirect factor, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.
Ambient group ($G$) information
Description: | $C_6^2:S_4\wr C_2$ |
Order: | \(41472\)\(\medspace = 2^{9} \cdot 3^{4} \) |
Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Derived length: | $4$ |
The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.
Quotient group ($Q$) structure
Description: | $A_4^2:\SOPlus(4,2)$ |
Order: | \(10368\)\(\medspace = 2^{7} \cdot 3^{4} \) |
Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Automorphism Group: | $C_3^2:S_4^2:D_6$, of order \(62208\)\(\medspace = 2^{8} \cdot 3^{5} \) |
Outer Automorphisms: | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
Nilpotency class: | $-1$ |
Derived length: | $4$ |
The quotient is nonabelian, monomial (hence solvable), and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_{1191}:C_{44}$, of order \(995328\)\(\medspace = 2^{12} \cdot 3^{5} \) |
$\operatorname{Aut}(H)$ | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
$W$ | $C_2$, of order \(2\) |
Related subgroups
Centralizer: | $C_2\times A_4^2.C_3^2.C_2^3$ | |
Normalizer: | $C_6^2:S_4\wr C_2$ | |
Complements: | $A_4^2:\SOPlus(4,2)$ | |
Minimal over-subgroups: | $D_4$ | |
Maximal under-subgroups: | $C_2$ | $C_2$ |
Other information
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | not computed |
Projective image | $C_3^2:S_4^2:C_2^2$ |