Properties

Label 4116.ba.4.a1.a1
Order $ 3 \cdot 7^{3} $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3\times \He_7$
Order: \(1029\)\(\medspace = 3 \cdot 7^{3} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(21\)\(\medspace = 3 \cdot 7 \)
Generators: $b^{14}, c, d, b^{6}d^{6}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is the Fitting subgroup (hence characteristic, normal, nilpotent, solvable, supersolvable, and monomial), a semidirect factor, nonabelian, a Hall subgroup, elementary for $p = 7$ (hence hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_{21}.D_7^2$
Order: \(4116\)\(\medspace = 2^{2} \cdot 3 \cdot 7^{3} \)
Exponent: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$\He_7:(C_6^2:C_2^2)$, of order \(49392\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 7^{3} \)
$\operatorname{Aut}(H)$ $(C_7\times C_{14}):\GL(2,7)$, of order \(197568\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 7^{3} \)
$\operatorname{res}(\operatorname{Aut}(G))$$F_7^2:C_2^2$, of order \(7056\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 7^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(7\)
$W$$D_7^2$, of order \(196\)\(\medspace = 2^{2} \cdot 7^{2} \)

Related subgroups

Centralizer:$C_{21}$
Normalizer:$C_{21}.D_7^2$
Complements:$C_2^2$
Minimal over-subgroups:$C_7^2:C_{42}$$C_7^2:C_{42}$$\He_7:C_6$
Maximal under-subgroups:$\He_7$$C_7\times C_{21}$$C_7\times C_{21}$$C_7\times C_{21}$$C_7\times C_{21}$$C_7\times C_{21}$

Other information

Möbius function$2$
Projective image$C_7^2:D_{14}$