Properties

Label 410.6.41.a1.a1
Order $ 2 \cdot 5 $
Index $ 41 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{10}$
Order: \(10\)\(\medspace = 2 \cdot 5 \)
Index: \(41\)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Generators: $a^{205}, a^{82}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), maximal, a direct factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,5$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), central, and a Hall subgroup.

Ambient group ($G$) information

Description: $C_{410}$
Order: \(410\)\(\medspace = 2 \cdot 5 \cdot 41 \)
Exponent: \(410\)\(\medspace = 2 \cdot 5 \cdot 41 \)
Nilpotency class:$1$
Derived length:$1$

The ambient group is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,5,41$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Quotient group ($Q$) structure

Description: $C_{41}$
Order: \(41\)
Exponent: \(41\)
Automorphism Group: $C_{40}$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \)
Outer Automorphisms: $C_{40}$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_4\times C_{40}$, of order \(160\)\(\medspace = 2^{5} \cdot 5 \)
$\operatorname{Aut}(H)$ $C_4$, of order \(4\)\(\medspace = 2^{2} \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_4$, of order \(4\)\(\medspace = 2^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(40\)\(\medspace = 2^{3} \cdot 5 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{410}$
Normalizer:$C_{410}$
Complements:$C_{41}$
Minimal over-subgroups:$C_{410}$
Maximal under-subgroups:$C_5$$C_2$

Other information

Möbius function$-1$
Projective image$C_{41}$