Properties

Label 410.4.10.a1.a1
Order $ 41 $
Index $ 2 \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{41}$
Order: \(41\)
Index: \(10\)\(\medspace = 2 \cdot 5 \)
Exponent: \(41\)
Generators: $b^{5}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the commutator subgroup (hence characteristic and normal), a semidirect factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $41$-Sylow subgroup (hence a Hall subgroup), a $p$-group, and simple.

Ambient group ($G$) information

Description: $C_5\times D_{41}$
Order: \(410\)\(\medspace = 2 \cdot 5 \cdot 41 \)
Exponent: \(410\)\(\medspace = 2 \cdot 5 \cdot 41 \)
Derived length:$2$

The ambient group is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Quotient group ($Q$) structure

Description: $C_{10}$
Order: \(10\)\(\medspace = 2 \cdot 5 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Automorphism Group: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Outer Automorphisms: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,5$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_4\times F_{41}$, of order \(6560\)\(\medspace = 2^{5} \cdot 5 \cdot 41 \)
$\operatorname{Aut}(H)$ $C_{40}$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_{40}$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(164\)\(\medspace = 2^{2} \cdot 41 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_{205}$
Normalizer:$C_5\times D_{41}$
Complements:$C_{10}$
Minimal over-subgroups:$C_{205}$$D_{41}$
Maximal under-subgroups:$C_1$

Other information

Möbius function$1$
Projective image$C_5\times D_{41}$