Subgroup ($H$) information
| Description: | $C_2\times D_4$ | 
| Order: | \(16\)\(\medspace = 2^{4} \) | 
| Index: | \(256\)\(\medspace = 2^{8} \) | 
| Exponent: | \(4\)\(\medspace = 2^{2} \) | 
| Generators: | $\left(\begin{array}{rr}
23 & 24 \\
26 & 25
\end{array}\right), \left(\begin{array}{rr}
25 & 24 \\
0 & 9
\end{array}\right), \left(\begin{array}{rr}
1 & 16 \\
16 & 17
\end{array}\right)$ | 
| Nilpotency class: | $2$ | 
| Derived length: | $2$ | 
The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metabelian, and rational.
Ambient group ($G$) information
| Description: | $C_4^4.C_2^4$ | 
| Order: | \(4096\)\(\medspace = 2^{12} \) | 
| Exponent: | \(8\)\(\medspace = 2^{3} \) | 
| Nilpotency class: | $3$ | 
| Derived length: | $2$ | 
The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | Group of order \(17179869184\)\(\medspace = 2^{34} \) | 
| $\operatorname{Aut}(H)$ | $C_2\wr C_2^2$, of order \(64\)\(\medspace = 2^{6} \) | 
| $\card{W}$ | \(8\)\(\medspace = 2^{3} \) | 
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $64$ | 
| Number of conjugacy classes in this autjugacy class | $32$ | 
| Möbius function | not computed | 
| Projective image | not computed | 
