Properties

Label 4096.oh.256.DD
Order $ 2^{4} $
Index $ 2^{8} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_8$
Order: \(16\)\(\medspace = 2^{4} \)
Index: \(256\)\(\medspace = 2^{8} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Generators: $\left(\begin{array}{rr} 9 & 20 \\ 16 & 9 \end{array}\right), \left(\begin{array}{rr} 15 & 24 \\ 0 & 15 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_8^2.(C_2^3\times C_8)$
Order: \(4096\)\(\medspace = 2^{12} \)
Exponent: \(16\)\(\medspace = 2^{4} \)
Nilpotency class:$3$
Derived length:$2$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_8^2.C_2^2$
Order: \(256\)\(\medspace = 2^{8} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Automorphism Group: $C_2^4.(C_2^3\times C_{12}).C_2^5$
Outer Automorphisms: $(C_2\times A_4).C_2^6.C_2^3$
Nilpotency class: $2$
Derived length: $2$

The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(536870912\)\(\medspace = 2^{29} \)
$\operatorname{Aut}(H)$ $C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \)
$\card{W}$\(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_2^2\times C_4\times C_8^2$
Normalizer:$C_8^2.(C_2^3\times C_8)$
Minimal over-subgroups:$C_2^2\times C_8$$C_2^2\times C_8$$C_2^2\times C_8$$C_2\times \SD_{16}$
Maximal under-subgroups:$C_2\times C_4$$C_8$

Other information

Number of subgroups in this autjugacy class$8$
Number of conjugacy classes in this autjugacy class$8$
Möbius function not computed
Projective image not computed