Properties

Label 4096.ng.512.Z
Order $ 2^{3} $
Index $ 2^{9} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_4$
Order: \(8\)\(\medspace = 2^{3} \)
Index: \(512\)\(\medspace = 2^{9} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $\left(\begin{array}{rr} 31 & 16 \\ 0 & 31 \end{array}\right), \left(\begin{array}{rr} 25 & 24 \\ 0 & 25 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_4^3.C_2^6$
Order: \(4096\)\(\medspace = 2^{12} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Nilpotency class:$3$
Derived length:$2$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_8^2.C_2^3$
Order: \(512\)\(\medspace = 2^{9} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Automorphism Group: $C_2^7.C_6.C_2^6.C_2^6$
Outer Automorphisms: $C_2^5.(C_2\times C_6).C_2^6.C_2^5$
Nilpotency class: $2$
Derived length: $2$

The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(103079215104\)\(\medspace = 2^{35} \cdot 3 \)
$\operatorname{Aut}(H)$ $D_4$, of order \(8\)\(\medspace = 2^{3} \)
$\card{W}$\(2\)

Related subgroups

Centralizer:$C_2^5.C_4^3$
Normalizer:$C_4^3.C_2^6$
Minimal over-subgroups:$C_2^2\times C_4$$C_2^2\times C_4$$C_2^2\times C_4$$C_2^2\times C_4$$C_2\times D_4$$C_2\times C_8$
Maximal under-subgroups:$C_2^2$$C_4$$C_4$

Other information

Number of subgroups in this autjugacy class$24$
Number of conjugacy classes in this autjugacy class$24$
Möbius function not computed
Projective image not computed