Properties

Label 4096.mq.256.X
Order $ 2^{4} $
Index $ 2^{8} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2\times C_4$
Order: \(16\)\(\medspace = 2^{4} \)
Index: \(256\)\(\medspace = 2^{8} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $\left(\begin{array}{rr} 17 & 16 \\ 16 & 17 \end{array}\right), \left(\begin{array}{rr} 25 & 8 \\ 0 & 25 \end{array}\right), \left(\begin{array}{rr} 17 & 0 \\ 0 & 17 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), and a $p$-group (hence elementary and hyperelementary).

Ambient group ($G$) information

Description: $C_4^4.C_2^4$
Order: \(4096\)\(\medspace = 2^{12} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Nilpotency class:$3$
Derived length:$2$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_4^2.C_2^4$
Order: \(256\)\(\medspace = 2^{8} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Automorphism Group: $C_2^7.C_6.C_2^5.C_2^5$
Outer Automorphisms: $C_2^5.(C_2^5\times C_6).C_2^5$
Nilpotency class: $2$
Derived length: $2$

The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(2147483648\)\(\medspace = 2^{31} \)
$\operatorname{Aut}(H)$ $C_2^3:S_4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
$\card{W}$\(2\)

Related subgroups

Centralizer:$C_2^3.C_4^4$
Normalizer:$C_4^4.C_2^4$
Minimal over-subgroups:$C_2^3\times C_4$$C_2\times C_4^2$$C_2\times C_4^2$$C_2\times C_4^2$$C_2^2\times D_4$$C_2^2.D_4$$C_2^2\times C_8$
Maximal under-subgroups:$C_2^3$$C_2\times C_4$$C_2\times C_4$$C_2\times C_4$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed