Properties

Label 4096.buh.8._.DY
Order $ 2^{9} $
Index $ 2^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_8\wr C_2$
Order: \(512\)\(\medspace = 2^{9} \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(16\)\(\medspace = 2^{4} \)
Generators: $a, cde^{2}f^{4}, f$ Copy content Toggle raw display
Nilpotency class: $6$
Derived length: $3$

The subgroup is nonabelian and a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary).

Ambient group ($G$) information

Description: $C_4^2:C_2^2.D_4^2$
Order: \(4096\)\(\medspace = 2^{12} \)
Exponent: \(16\)\(\medspace = 2^{4} \)
Nilpotency class:$6$
Derived length:$3$

The ambient group is nonabelian and a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2\times C_2^4.C_2^6.C_2^3$
$\operatorname{Aut}(H)$ $(C_4\times \OD_{16}).D_4^2$, of order \(4096\)\(\medspace = 2^{12} \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Normal closure: not computed
Core: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Number of subgroups in this conjugacy class$2$
Möbius function not computed
Projective image not computed