Properties

Label 4096.bod.4.e1.a1
Order $ 2^{10} $
Index $ 2^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_8.D_{64}$
Order: \(1024\)\(\medspace = 2^{10} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(128\)\(\medspace = 2^{7} \)
Generators: $\left(\begin{array}{rr} 1 & 0 \\ 0 & 256 \end{array}\right), \left(\begin{array}{rr} 253 & 0 \\ 0 & 64 \end{array}\right), \left(\begin{array}{rr} 15 & 0 \\ 0 & 120 \end{array}\right), \left(\begin{array}{rr} 0 & 31 \\ 199 & 0 \end{array}\right), \left(\begin{array}{rr} 199 & 0 \\ 0 & 185 \end{array}\right), \left(\begin{array}{rr} 23 & 0 \\ 0 & 190 \end{array}\right), \left(\begin{array}{rr} 225 & 0 \\ 0 & 8 \end{array}\right), \left(\begin{array}{rr} 16 & 0 \\ 0 & 241 \end{array}\right), \left(\begin{array}{rr} 1 & 0 \\ 0 & 241 \end{array}\right), \left(\begin{array}{rr} 256 & 0 \\ 0 & 256 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $7$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_{16}.D_{128}$
Order: \(4096\)\(\medspace = 2^{12} \)
Exponent: \(256\)\(\medspace = 2^{8} \)
Nilpotency class:$8$
Derived length:$2$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{64}.C_{32}.C_2.C_2^5$
$\operatorname{Aut}(H)$ $C_{32}.C_{32}.C_2^4$
$\card{\operatorname{res}(S)}$\(16384\)\(\medspace = 2^{14} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$D_{64}$, of order \(128\)\(\medspace = 2^{7} \)

Related subgroups

Centralizer:$C_{16}$
Normalizer:$D_{128}:C_8$
Normal closure:$D_{128}:C_8$
Core:$C_4\times C_{128}$
Minimal over-subgroups:$D_{128}:C_8$
Maximal under-subgroups:$C_4\times C_{128}$$D_{64}:C_4$$C_{64}.C_8$

Other information

Number of subgroups in this conjugacy class$2$
Möbius function$0$
Projective image$D_{64}:C_4$