Properties

Label 4096.boc.4.b1.a1
Order $ 2^{10} $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_8.D_{64}$
Order: \(1024\)\(\medspace = 2^{10} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(128\)\(\medspace = 2^{7} \)
Generators: $\left(\begin{array}{rr} 165 & 0 \\ 0 & 81 \end{array}\right), \left(\begin{array}{rr} 253 & 0 \\ 0 & 64 \end{array}\right), \left(\begin{array}{rr} 1 & 0 \\ 0 & 256 \end{array}\right), \left(\begin{array}{rr} 32 & 0 \\ 0 & 249 \end{array}\right), \left(\begin{array}{rr} 240 & 0 \\ 0 & 136 \end{array}\right), \left(\begin{array}{rr} 0 & 1 \\ 1 & 0 \end{array}\right), \left(\begin{array}{rr} 16 & 0 \\ 0 & 241 \end{array}\right), \left(\begin{array}{rr} 9 & 0 \\ 0 & 207 \end{array}\right), \left(\begin{array}{rr} 1 & 0 \\ 0 & 241 \end{array}\right), \left(\begin{array}{rr} 256 & 0 \\ 0 & 256 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $7$
Derived length: $2$

The subgroup is normal, nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $D_{128}:C_{16}$
Order: \(4096\)\(\medspace = 2^{12} \)
Exponent: \(128\)\(\medspace = 2^{7} \)
Nilpotency class:$7$
Derived length:$2$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_4$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{64}.C_4.C_4^2.C_2^5$
$\operatorname{Aut}(H)$ $C_{32}.C_{32}.C_2^4$
$\card{\operatorname{res}(S)}$\(16384\)\(\medspace = 2^{14} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$D_{64}$, of order \(128\)\(\medspace = 2^{7} \)

Related subgroups

Centralizer:$C_{32}$
Normalizer:$D_{128}:C_{16}$
Minimal over-subgroups:$D_{128}:C_8$
Maximal under-subgroups:$D_{64}:C_4$$C_{64}.C_8$$C_4\times C_{128}$
Autjugate subgroups:4096.boc.4.b1.b1

Other information

Möbius function not computed
Projective image$C_{32} . (C_2^2\times C_4)$