Properties

Label 40500.e.18.a1
Order $ 2 \cdot 3^{2} \cdot 5^{3} $
Index $ 2 \cdot 3^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:not computed
Order: \(2250\)\(\medspace = 2 \cdot 3^{2} \cdot 5^{3} \)
Index: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Exponent: not computed
Generators: $a^{6}, d^{3}, c^{10}, b^{3}, c^{5}d^{10}, c^{3}d^{6}$ Copy content Toggle raw display
Derived length: not computed

The subgroup is characteristic (hence normal), nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group. Whether it is elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.

Ambient group ($G$) information

Description: $C_{15}\wr C_3:C_4$
Order: \(40500\)\(\medspace = 2^{2} \cdot 3^{4} \cdot 5^{3} \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_3\times S_3$
Order: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $2$

The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_5\times C_{15}^2).C_6^2.C_2^4$
$\operatorname{Aut}(H)$ not computed
$W$$C_5\wr C_3:C_4$, of order \(1500\)\(\medspace = 2^{2} \cdot 3 \cdot 5^{3} \)

Related subgroups

Centralizer:$C_3^3$
Normalizer:$C_{15}\wr C_3:C_4$
Minimal over-subgroups:$C_3^3\times C_5^2:D_5$$(C_5\times C_{15}^2):C_6$$(C_5\times C_{15}^2).C_6$$C_3\times C_5^3:(C_3:C_4)$
Maximal under-subgroups:$C_5\times C_{15}^2$$C_5^3:C_6$$C_5^3:C_6$$C_{15}^2:C_2$$C_{15}^2:C_2$$C_{15}^2:C_2$$C_{15}^2:C_2$$C_{15}^2:C_2$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$-3$
Projective image$C_{15}^2:C_{15}:C_4$