Properties

Label 40500.e.12.b1
Order $ 3^{3} \cdot 5^{3} $
Index $ 2^{2} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{15}^2:C_{15}$
Order: \(3375\)\(\medspace = 3^{3} \cdot 5^{3} \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(15\)\(\medspace = 3 \cdot 5 \)
Generators: $b^{10}c^{4}d^{6}, d^{3}, b^{3}, c^{10}, c^{5}d^{10}, c^{3}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is the commutator subgroup (hence characteristic and normal), a semidirect factor, nonabelian, monomial (hence solvable), and metabelian.

Ambient group ($G$) information

Description: $C_{15}\wr C_3:C_4$
Order: \(40500\)\(\medspace = 2^{2} \cdot 3^{4} \cdot 5^{3} \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_{12}$
Order: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
Outer Automorphisms: $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_5\times C_{15}^2).C_6^2.C_2^4$
$\operatorname{Aut}(H)$ $C_4\times C_5^2.C_3^3.C_{12}.C_2^3$
$W$$C_{15}^2:C_3:C_4$, of order \(2700\)\(\medspace = 2^{2} \cdot 3^{3} \cdot 5^{2} \)

Related subgroups

Centralizer:$C_{15}$
Normalizer:$C_{15}\wr C_3:C_4$
Complements:$C_{12}$
Minimal over-subgroups:$C_{15}\wr C_3$$(C_5\times C_{15}^2):C_6$
Maximal under-subgroups:$C_5\times C_{15}^2$$C_5^3:C_3^2$$C_{15}^2:C_3$$C_5\times \He_3$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_{15}^2:C_{15}:C_4$