Properties

Label 405.14.3.b1.c1
Order $ 3^{3} \cdot 5 $
Index $ 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_9:C_{15}$
Order: \(135\)\(\medspace = 3^{3} \cdot 5 \)
Index: \(3\)
Exponent: \(45\)\(\medspace = 3^{2} \cdot 5 \)
Generators: $a, c^{9}, c^{30}, bc^{10}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is normal, maximal, a semidirect factor, nonabelian, elementary for $p = 3$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metacyclic (hence metabelian).

Ambient group ($G$) information

Description: $C_{15}.C_3^3$
Order: \(405\)\(\medspace = 3^{4} \cdot 5 \)
Exponent: \(45\)\(\medspace = 3^{2} \cdot 5 \)
Nilpotency class:$2$
Derived length:$2$

The ambient group is nonabelian, elementary for $p = 3$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_3$
Order: \(3\)
Exponent: \(3\)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^2:\GL(2,3)\times C_{12}$, of order \(5184\)\(\medspace = 2^{6} \cdot 3^{4} \)
$\operatorname{Aut}(H)$ $C_4\times C_3^2:S_3$, of order \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)
$\operatorname{res}(S)$$C_4\times C_3^2:S_3$, of order \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(3\)
$W$$C_3^2$, of order \(9\)\(\medspace = 3^{2} \)

Related subgroups

Centralizer:$C_{45}$
Normalizer:$C_{15}.C_3^3$
Complements:$C_3$ $C_3$ $C_3$
Minimal over-subgroups:$C_{15}.C_3^3$
Maximal under-subgroups:$C_3\times C_{15}$$C_{45}$$C_{45}$$C_{45}$$C_9:C_3$
Autjugate subgroups:405.14.3.b1.a1405.14.3.b1.b1405.14.3.b1.d1405.14.3.b1.e1405.14.3.b1.f1405.14.3.b1.g1405.14.3.b1.h1

Other information

Möbius function$-1$
Projective image$C_3^3$