Properties

Label 405.10.135.a1.a1
Order $ 3 $
Index $ 3^{3} \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3$
Order: \(3\)
Index: \(135\)\(\medspace = 3^{3} \cdot 5 \)
Exponent: \(3\)
Generators: $c^{30}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), stem (hence central), a $p$-group, and simple.

Ambient group ($G$) information

Description: $C_{15}.\He_3$
Order: \(405\)\(\medspace = 3^{4} \cdot 5 \)
Exponent: \(45\)\(\medspace = 3^{2} \cdot 5 \)
Nilpotency class:$3$
Derived length:$2$

The ambient group is nonabelian, elementary for $p = 3$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_5\times \He_3$
Order: \(135\)\(\medspace = 3^{3} \cdot 5 \)
Exponent: \(15\)\(\medspace = 3 \cdot 5 \)
Automorphism Group: $C_4\times C_3^2:\GL(2,3)$, of order \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Outer Automorphisms: $C_4\times \GL(2,3)$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
Nilpotency class: $2$
Derived length: $2$

The quotient is nonabelian, elementary for $p = 3$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^3.(S_3\times C_{12})$, of order \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \)
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2$, of order \(2\)
$\card{\operatorname{ker}(\operatorname{res})}$\(972\)\(\medspace = 2^{2} \cdot 3^{5} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{15}.\He_3$
Normalizer:$C_{15}.\He_3$
Minimal over-subgroups:$C_{15}$$C_3^2$$C_9$$C_9$$C_9$$C_9$
Maximal under-subgroups:$C_1$

Other information

Möbius function$0$
Projective image$C_5\times \He_3$