Properties

Label 4046.a.289.a1.a1
Order $ 2 \cdot 7 $
Index $ 17^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{14}$
Order: \(14\)\(\medspace = 2 \cdot 7 \)
Index: \(289\)\(\medspace = 17^{2} \)
Exponent: \(14\)\(\medspace = 2 \cdot 7 \)
Generators: $b^{119}, b^{170}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), a direct factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,7$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), central, and a Hall subgroup.

Ambient group ($G$) information

Description: $C_{17}\times C_{238}$
Order: \(4046\)\(\medspace = 2 \cdot 7 \cdot 17^{2} \)
Exponent: \(238\)\(\medspace = 2 \cdot 7 \cdot 17 \)
Nilpotency class:$1$
Derived length:$1$

The ambient group is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 17$ (hence hyperelementary), and metacyclic.

Quotient group ($Q$) structure

Description: $C_{17}^2$
Order: \(289\)\(\medspace = 17^{2} \)
Exponent: \(17\)
Automorphism Group: $\GL(2,17)$, of order \(78336\)\(\medspace = 2^{9} \cdot 3^{2} \cdot 17 \)
Outer Automorphisms: $\GL(2,17)$, of order \(78336\)\(\medspace = 2^{9} \cdot 3^{2} \cdot 17 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6\times C_{16}.\PSL(2,17).C_2$
$\operatorname{Aut}(H)$ $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(78336\)\(\medspace = 2^{9} \cdot 3^{2} \cdot 17 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{17}\times C_{238}$
Normalizer:$C_{17}\times C_{238}$
Complements:$C_{17}^2$
Minimal over-subgroups:$C_{238}$$C_{238}$$C_{238}$$C_{238}$$C_{238}$$C_{238}$$C_{238}$$C_{238}$$C_{238}$$C_{238}$$C_{238}$$C_{238}$$C_{238}$$C_{238}$$C_{238}$$C_{238}$$C_{238}$$C_{238}$
Maximal under-subgroups:$C_7$$C_2$

Other information

Möbius function$17$
Projective image$C_{17}^2$