Properties

Label 40320.o.504.a1.a1
Order $ 2^{4} \cdot 5 $
Index $ 2^{3} \cdot 3^{2} \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^4:C_5$
Order: \(80\)\(\medspace = 2^{4} \cdot 5 \)
Index: \(504\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 7 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Generators: $\langle(1,11)(2,9)(3,17)(4,18)(5,7)(6,19)(12,15)(14,16)(23,38)(24,31)(26,37)(27,32) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, monomial (hence solvable), metabelian, and an A-group.

Ambient group ($G$) information

Description: $\PSL(3,4):C_2$
Order: \(40320\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 5 \cdot 7 \)
Exponent: \(840\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Derived length:$1$

The ambient group is nonabelian, almost simple, nonsolvable, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\PSL(3,4):D_6$, of order \(241920\)\(\medspace = 2^{8} \cdot 3^{3} \cdot 5 \cdot 7 \)
$\operatorname{Aut}(H)$ $F_{16}:C_4$, of order \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
$W$$C_2^4:D_5$, of order \(160\)\(\medspace = 2^{5} \cdot 5 \)

Related subgroups

Centralizer:$C_1$
Normalizer:$C_2^4:D_5$
Normal closure:$\PSL(3,4)$
Core:$C_1$
Minimal over-subgroups:$C_2^4:D_5$
Maximal under-subgroups:$C_2^4$$C_5$

Other information

Number of subgroups in this conjugacy class$252$
Möbius function$0$
Projective image$\PSL(3,4):C_2$