Properties

Label 4032.fk.28.a1.b1
Order $ 2^{4} \cdot 3^{2} $
Index $ 2^{2} \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6\times S_4$
Order: \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Index: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $ac^{49}e, e, de, c^{42}, b^{2}, c^{28}e$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_{28}:(C_6\times S_4)$
Order: \(4032\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 7 \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_{14}\times A_4).C_6.C_2^4$
$\operatorname{Aut}(H)$ $C_2^2\times S_4$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
$\operatorname{res}(S)$$C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(24\)\(\medspace = 2^{3} \cdot 3 \)
$W$$C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)

Related subgroups

Centralizer:$C_2\times C_6$
Normalizer:$\GL(2,\mathbb{Z}/4):C_6$
Normal closure:$C_7:C_6\times S_4$
Core:$C_2\times S_4$
Minimal over-subgroups:$C_7:C_6\times S_4$$C_2\times C_6\times S_4$$C_3\times \GL(2,\mathbb{Z}/4)$$C_{12}:S_4$
Maximal under-subgroups:$C_6\times A_4$$C_3\times S_4$$C_2\times S_4$$C_6\times D_4$$C_6\times S_3$
Autjugate subgroups:4032.fk.28.a1.a1

Other information

Number of subgroups in this conjugacy class$7$
Möbius function$-2$
Projective image$C_2\times S_4\times F_7$