Subgroup ($H$) information
| Description: | $D_{14}$ |
| Order: | \(28\)\(\medspace = 2^{2} \cdot 7 \) |
| Index: | \(144\)\(\medspace = 2^{4} \cdot 3^{2} \) |
| Exponent: | \(14\)\(\medspace = 2 \cdot 7 \) |
| Generators: |
$ac^{28}e, c^{12}, b^{3}c^{70}de$
|
| Derived length: | $2$ |
The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.
Ambient group ($G$) information
| Description: | $C_{28}:(C_6\times S_4)$ |
| Order: | \(4032\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 7 \) |
| Exponent: | \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) |
| Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $(C_{14}\times A_4).C_6.C_2^4$ |
| $\operatorname{Aut}(H)$ | $C_2\times F_7$, of order \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) |
| $\operatorname{res}(S)$ | $F_7$, of order \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(8\)\(\medspace = 2^{3} \) |
| $W$ | $F_7$, of order \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \) |
Related subgroups
Other information
| Number of subgroups in this conjugacy class | $12$ |
| Möbius function | $0$ |
| Projective image | $C_{28}:(C_6\times S_4)$ |