Properties

Label 4032.ef.2016.a1.a1
Order $ 2 $
Index $ 2^{5} \cdot 3^{2} \cdot 7 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2$
Order: \(2\)
Index: \(2016\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 7 \)
Exponent: \(2\)
Generators: $b^{6}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the center (hence characteristic, normal, abelian, central, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), the Frattini subgroup, cyclic (hence elementary, hyperelementary, metacyclic, and a Z-group), stem, a $p$-group, simple, and rational.

Ambient group ($G$) information

Description: $F_7\times \GL(2,\mathbb{Z}/4)$
Order: \(4032\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 7 \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_2\times S_4\times F_7$
Order: \(2016\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 7 \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Automorphism Group: $C_2^2\times S_4\times F_7$, of order \(4032\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 7 \)
Outer Automorphisms: $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
Nilpotency class: $-1$
Derived length: $3$

The quotient is nonabelian and monomial (hence solvable).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^3\times F_7\times S_4$
$\operatorname{Aut}(H)$ $C_1$, of order $1$
$\operatorname{res}(\operatorname{Aut}(G))$$C_1$, of order $1$
$\card{\operatorname{ker}(\operatorname{res})}$\(8064\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 7 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$F_7\times \GL(2,\mathbb{Z}/4)$
Normalizer:$F_7\times \GL(2,\mathbb{Z}/4)$
Minimal over-subgroups:$C_{14}$$C_6$$C_6$$C_6$$C_2^2$$C_2^2$$C_2^2$$C_2^2$$C_2^2$$C_2^2$$C_2^2$$C_2^2$$C_2^2$$C_4$$C_4$
Maximal under-subgroups:$C_1$

Other information

Möbius function$-672$
Projective image$C_2\times S_4\times F_7$