Properties

Label 40000.iu.100.BK
Order $ 2^{4} \cdot 5^{2} $
Index $ 2^{2} \cdot 5^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{10}^2.C_2^2$
Order: \(400\)\(\medspace = 2^{4} \cdot 5^{2} \)
Index: \(100\)\(\medspace = 2^{2} \cdot 5^{2} \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $ad^{6}ef^{3}g, e^{2}g^{4}, cd^{6}e^{4}f^{3}, b^{2}cd^{8}f^{2}g^{2}, bdef^{3}, d^{2}e^{8}f^{4}g$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $(\SO(3,7)\times S_4^2).C_2^2$
Order: \(40000\)\(\medspace = 2^{6} \cdot 5^{4} \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(1280000\)\(\medspace = 2^{11} \cdot 5^{4} \)
$\operatorname{Aut}(H)$ $D_{10}^2.D_4^2$, of order \(25600\)\(\medspace = 2^{10} \cdot 5^{2} \)
$W$$D_5\wr C_2$, of order \(200\)\(\medspace = 2^{3} \cdot 5^{2} \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_{10}^2.D_4$
Normal closure:$C_{10}.D_5^3$
Core:$C_2$
Minimal over-subgroups:$C_2.D_5^3$$C_{10}^2.D_4$
Maximal under-subgroups:$C_{10}:C_{20}$$C_{10}.D_{10}$$C_{10}:D_{10}$$C_{10}.D_{10}$$C_4\times D_{10}$

Other information

Number of subgroups in this autjugacy class$50$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_5:D_5^3:C_2^2$