Properties

Label 40000.cw.2.G
Order $ 2^{5} \cdot 5^{4} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5^4:(C_4^2:C_2)$
Order: \(20000\)\(\medspace = 2^{5} \cdot 5^{4} \)
Index: \(2\)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $f^{2}, e^{2}f^{4}, be^{5}, ce^{8}f^{6}, b^{2}cd^{6}e^{4}f^{7}, d^{2}e^{2}f^{2}, acd^{6}e^{7}f^{8}, d^{5}, f^{5}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is normal, maximal, a semidirect factor, nonabelian, and solvable. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $(\SO(3,7)\times S_4^2).C_2^2$
Order: \(40000\)\(\medspace = 2^{6} \cdot 5^{4} \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(2560000\)\(\medspace = 2^{12} \cdot 5^{4} \)
$\operatorname{Aut}(H)$ $C_5^4.C_4.C_2^5.C_2^4$
$W$$(\SO(3,7)\times S_4^2):C_2$, of order \(20000\)\(\medspace = 2^{5} \cdot 5^{4} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$(\SO(3,7)\times S_4^2).C_2^2$
Complements:$C_2$ $C_2$ $C_2$
Minimal over-subgroups:$(\SO(3,7)\times S_4^2).C_2^2$
Maximal under-subgroups:$(C_5^3\times C_{10}).D_4$$(C_5^3\times C_{10}).D_4$$C_5^4:(C_2^2\times C_4)$$(C_5^3\times C_{10}).D_4$$C_5^4.C_4^2$$C_5^4.C_4^2$$(C_5^3\times C_{10}).Q_8$$D_5^2.(C_2\times C_4)$

Other information

Number of subgroups in this autjugacy class$2$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$-1$
Projective image$(\SO(3,7)\times S_4^2):C_2$