Subgroup ($H$) information
| Description: | $C_5^4:(C_4^2:C_2)$ |
| Order: | \(20000\)\(\medspace = 2^{5} \cdot 5^{4} \) |
| Index: | \(2\) |
| Exponent: | \(20\)\(\medspace = 2^{2} \cdot 5 \) |
| Generators: |
$f^{2}, e^{2}f^{4}, be^{5}, ce^{8}f^{6}, b^{2}cd^{6}e^{4}f^{7}, d^{2}e^{2}f^{2}, acd^{6}e^{7}f^{8}, d^{5}, f^{5}$
|
| Derived length: | $3$ |
The subgroup is normal, maximal, a semidirect factor, nonabelian, and solvable. Whether it is monomial has not been computed.
Ambient group ($G$) information
| Description: | $(\SO(3,7)\times S_4^2).C_2^2$ |
| Order: | \(40000\)\(\medspace = 2^{6} \cdot 5^{4} \) |
| Exponent: | \(20\)\(\medspace = 2^{2} \cdot 5 \) |
| Derived length: | $3$ |
The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.
Quotient group ($Q$) structure
| Description: | $C_2$ |
| Order: | \(2\) |
| Exponent: | \(2\) |
| Automorphism Group: | $C_1$, of order $1$ |
| Outer Automorphisms: | $C_1$, of order $1$ |
| Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | Group of order \(2560000\)\(\medspace = 2^{12} \cdot 5^{4} \) |
| $\operatorname{Aut}(H)$ | $C_5^4.C_4.C_2^5.C_2^4$ |
| $W$ | $(\SO(3,7)\times S_4^2):C_2$, of order \(20000\)\(\medspace = 2^{5} \cdot 5^{4} \) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $2$ |
| Number of conjugacy classes in this autjugacy class | $2$ |
| Möbius function | $-1$ |
| Projective image | $(\SO(3,7)\times S_4^2):C_2$ |