Subgroup ($H$) information
| Description: | $C_5\times D_5$ |
| Order: | \(50\)\(\medspace = 2 \cdot 5^{2} \) |
| Index: | \(8\)\(\medspace = 2^{3} \) |
| Exponent: | \(10\)\(\medspace = 2 \cdot 5 \) |
| Generators: |
$ab, d^{2}, c^{2}$
|
| Derived length: | $2$ |
The subgroup is normal, a direct factor, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.
Ambient group ($G$) information
| Description: | $C_{10}^2:C_2^2$ |
| Order: | \(400\)\(\medspace = 2^{4} \cdot 5^{2} \) |
| Exponent: | \(10\)\(\medspace = 2 \cdot 5 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.
Quotient group ($Q$) structure
| Description: | $C_2^3$ |
| Order: | \(8\)\(\medspace = 2^{3} \) |
| Exponent: | \(2\) |
| Automorphism Group: | $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) |
| Outer Automorphisms: | $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) |
| Derived length: | $1$ |
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_4\times C_2^3.\PSL(2,7)\times F_5$ |
| $\operatorname{Aut}(H)$ | $C_4\times F_5$, of order \(80\)\(\medspace = 2^{4} \cdot 5 \) |
| $\operatorname{res}(S)$ | $C_4\times F_5$, of order \(80\)\(\medspace = 2^{4} \cdot 5 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) |
| $W$ | $D_5$, of order \(10\)\(\medspace = 2 \cdot 5 \) |
Related subgroups
| Centralizer: | $C_2^2\times C_{10}$ | ||
| Normalizer: | $C_{10}^2:C_2^2$ | ||
| Complements: | $C_2^3$ $C_2^3$ | ||
| Minimal over-subgroups: | $C_5\times D_{10}$ | ||
| Maximal under-subgroups: | $C_5^2$ | $D_5$ | $C_{10}$ |
Other information
| Number of subgroups in this autjugacy class | $8$ |
| Number of conjugacy classes in this autjugacy class | $8$ |
| Möbius function | $-8$ |
| Projective image | $C_2^2\times D_{10}$ |