Properties

Label 400.212.80.a1.a1
Order $ 5 $
Index $ 2^{4} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5$
Order: \(5\)
Index: \(80\)\(\medspace = 2^{4} \cdot 5 \)
Exponent: \(5\)
Generators: $\left(\begin{array}{rrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 2 & 1 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Ambient group ($G$) information

Description: $C_2\times C_5^2:Q_8$
Order: \(400\)\(\medspace = 2^{4} \cdot 5^{2} \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian, monomial (hence solvable), and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{10}^2:\Unitary(2,3)$, of order \(9600\)\(\medspace = 2^{7} \cdot 3 \cdot 5^{2} \)
$\operatorname{Aut}(H)$ $C_4$, of order \(4\)\(\medspace = 2^{2} \)
$\operatorname{res}(S)$$C_4$, of order \(4\)\(\medspace = 2^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(400\)\(\medspace = 2^{4} \cdot 5^{2} \)
$W$$C_4$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_5\times C_{10}$
Normalizer:$C_{10}:F_5$
Normal closure:$C_5^2$
Core:$C_1$
Minimal over-subgroups:$C_5^2$$C_{10}$$D_5$$D_5$
Maximal under-subgroups:$C_1$
Autjugate subgroups:400.212.80.a1.b1400.212.80.a1.c1

Other information

Number of subgroups in this conjugacy class$2$
Möbius function$0$
Projective image$C_2\times C_5^2:Q_8$